高精度加法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
// C = A + B, A >= 0, B >= 0
vector<int> add(vector<int> &A, vector<int> &B)
{
if (A.size() < B.size()) return add(B, A);

vector<int> C;
int t = 0;
for (int i = 0; i < A.size(); i ++ )
{
t += A[i];
if (i < B.size()) t += B[i];
C.push_back(t % 10);
t /= 10;
}

if (t) C.push_back(t);
return C;

}

高精度减法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// C = A - B, 满足A >= B, A >= 0, B >= 0
vector<int> sub(vector<int> &A, vector<int> &B)
{
vector<int> C;
for (int i = 0, t = 0; i < A.size(); i ++ )
{
t = A[i] - t;
if (i < B.size()) t -= B[i];
C.push_back((t + 10) % 10);
if (t < 0) t = 1;
else t = 0;
}

while (C.size() > 1 && C.back() == 0) C.pop_back();
return C;

}

高精度乘低精度

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
// C = A * b, A >= 0, b >= 0
vector<int> mul(vector<int> &A, int b)
{
vector<int> C;

int t = 0;
for (int i = 0; i < A.size() || t; i ++ )
{
if (i < A.size()) t += A[i] * b;
C.push_back(t % 10);
t /= 10;
}

while (C.size() > 1 && C.back() == 0) C.pop_back();

return C;

}

高精度除以低精度

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// A / b = C ... r, A >= 0, b > 0
vector<int> div(vector<int> &A, int b, int &r)
{
vector<int> C;
r = 0;
for (int i = A.size() - 1; i >= 0; i -- )
{
r = r * 10 + A[i];
C.push_back(r / b);
r %= b;
}
reverse(C.begin(), C.end());
while (C.size() > 1 && C.back() == 0) C.pop_back();
return C;
}

单调队列

1
2
3
4
5
6
7
8
9
10
11
12
13
#### 

```
常见模型:找出滑动窗口中的最大值/最小值
int hh = 0, tt = -1;
for (int i = 0; i < n; i ++ )
{
while (hh <= tt && check_out(q[hh])) hh ++ ; // 判断队头是否滑出窗口
while (hh <= tt && check(q[tt], i)) tt -- ;
q[ ++ tt] = i;
```

}

KMP

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// s[]是长文本,p[]是模式串,n是s的长度,m是p的长度
求模式串的Next数组:
for (int i = 2, j = 0; i <= m; i ++ )
{
while (j && p[i] != p[j + 1]) j = ne[j];
if (p[i] == p[j + 1]) j ++ ;
ne[i] = j;
}

// 匹配
for (int i = 1, j = 0; i <= n; i ++ )
{
while (j && s[i] != p[j + 1]) j = ne[j];
if (s[i] == p[j + 1]) j ++ ;
if (j == m)
{
j = ne[j];
// 匹配成功后的逻辑
}
}

Trie树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
int son[N][26], cnt[N], idx;
// 0号点既是根节点,又是空节点
// son[][]存储树中每个节点的子节点
// cnt[]存储以每个节点结尾的单词数量

// 插入一个字符串
void insert(char *str)
{
int p = 0;
for (int i = 0; str[i]; i ++ )
{
int u = str[i] - 'a';
if (!son[p][u]) son[p][u] = ++ idx;
p = son[p][u];
}
cnt[p] ++ ;
}

// 查询字符串出现的次数
int query(char *str)
{
int p = 0;
for (int i = 0; str[i]; i ++ )
{
int u = str[i] - 'a';
if (!son[p][u]) return 0;
p = son[p][u];
}
return cnt[p];
}

并查集

(1)朴素并查集:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
int p[N]; //存储每个点的祖宗节点

// 返回x的祖宗节点
int find(int x)
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}

// 初始化,假定节点编号是1~n
for (int i = 1; i <= n; i ++ ) p[i] = i;

// 合并a和b所在的两个集合:
p[find(a)] = find(b);

(2)维护size的并查集:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
int p[N], size[N];
//p[]存储每个点的祖宗节点, size[]只有祖宗节点的有意义,表示祖宗节点所在集合中的点的数量

// 返回x的祖宗节点
int find(int x)
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}

// 初始化,假定节点编号是1~n
for (int i = 1; i <= n; i ++ )
{
p[i] = i;
size[i] = 1;
}

// 合并a和b所在的两个集合:
size[find(b)] += size[find(a)];
p[find(a)] = find(b);

(3)维护到祖宗节点距离的并查集:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
int p[N], d[N];
//p[]存储每个点的祖宗节点, d[x]存储x到p[x]的距离

// 返回x的祖宗节点
int find(int x)
{
if (p[x] != x)
{
int u = find(p[x]);
d[x] += d[p[x]];
p[x] = u;
}
return p[x];
}

// 初始化,假定节点编号是1~n
for (int i = 1; i <= n; i ++ )
{
p[i] = i;
d[i] = 0;
}

// 合并a和b所在的两个集合:
p[find(a)] = find(b);
d[find(a)] = distance; // 根据具体问题,初始化find(a)的偏移量

字符串哈希

核心思想:将字符串看成P进制数,P的经验值是131或13331,取这两个值的冲突概率低
小技巧:取模的数用2^64,这样直接用unsigned long long存储,溢出的结果就是取模的结果

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
typedef unsigned long long ULL;
ULL h[N], p[N]; // h[k]存储字符串前k个字母的哈希值, p[k]存储 P^k mod 2^64

// 初始化
p[0] = 1;
for (int i = 1; i <= n; i ++ )
{
h[i] = h[i - 1] * P + str[i];
p[i] = p[i - 1] * P;
}

// 计算子串 str[l ~ r] 的哈希值
ULL get(int l, int r)
{
return h[r] - h[l - 1] * p[r - l + 1];
}

朴素dijkstra算法

时间复杂是 O(n2+m)O(n2+m), nn 表示点数,mm 表示边数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
int g[N][N];  // 存储每条边
int dist[N]; // 存储1号点到每个点的最短距离
bool st[N]; // 存储每个点的最短路是否已经确定

// 求1号点到n号点的最短路,如果不存在则返回-1
int dijkstra()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;

for (int i = 0; i < n - 1; i ++ )
{
int t = -1; // 在还未确定最短路的点中,寻找距离最小的点
for (int j = 1; j <= n; j ++ )
if (!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;

// 用t更新其他点的距离
for (int j = 1; j <= n; j ++ )
dist[j] = min(dist[j], dist[t] + g[t][j]);

st[t] = true;
}

if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];

}

堆优化版dijkstra

时间复杂度 O(mlogn)O(mlogn), nn 表示点数,mm 表示边数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
typedef pair<int, int> PII;

int n; // 点的数量
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N]; // 存储所有点到1号点的距离
bool st[N]; // 存储每个点的最短距离是否已确定

// 求1号点到n号点的最短距离,如果不存在,则返回-1
int dijkstra()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
priority_queue<PII, vector<PII>, greater<PII>> heap;
heap.push({0, 1}); // first存储距离,second存储节点编号

while (heap.size())
{
auto t = heap.top();
heap.pop();

int ver = t.second, distance = t.first;

if (st[ver]) continue;
st[ver] = true;

for (int i = h[ver]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > distance + w[i])
{
dist[j] = distance + w[i];
heap.push({dist[j], j});
}
}
}

if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];

}

Bellman-Ford算法

时间复杂度 O(nm)O(nm), nn 表示点数,mm 表示边数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
int n, m;       // n表示点数,m表示边数
int dist[N]; // dist[x]存储1到x的最短路距离

struct Edge // 边,a表示出点,b表示入点,w表示边的权重
{
int a, b, w;
}edges[M];

// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;

// 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
for (int i = 0; i < n; i ++ )
{
for (int j = 0; j < m; j ++ )
{
int a = edges[j].a, b = edges[j].b, w = edges[j].w;
if (dist[b] > dist[a] + w)
dist[b] = dist[a] + w;
}
}

if (dist[n] > 0x3f3f3f3f / 2) return -1;
return dist[n];

}

spfa 算法(队列优化的Bellman-Ford算法)

时间复杂度 平均情况下 O(m)O(m),最坏情况下 O(nm)O(nm), nn 表示点数,mm 表示边数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
int n;      // 总点数
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N]; // 存储每个点到1号点的最短距离
bool st[N]; // 存储每个点是否在队列中

// 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1
int spfa()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;

queue<int> q;
q.push(1);
st[1] = true;

while (q.size())
{
auto t = q.front();
q.pop();

st[t] = false;

for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];
if (!st[j]) // 如果队列中已存在j,则不需要将j重复插入
{
q.push(j);
st[j] = true;
}
}
}
}

if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];

}

spfa判断图中是否存在负环

时间复杂度是 O(nm)O(nm), nn 表示点数,mm 表示边数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
int n;      // 总点数
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N], cnt[N]; // dist[x]存储1号点到x的最短距离,cnt[x]存储1到x的最短路中经过的点数
bool st[N]; // 存储每个点是否在队列中

// 如果存在负环,则返回true,否则返回false。
bool spfa()
{
// 不需要初始化dist数组
// 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。

queue<int> q;
for (int i = 1; i <= n; i ++ )
{
q.push(i);
st[i] = true;
}

while (q.size())
{
auto t = q.front();
q.pop();

st[t] = false;

for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];
cnt[j] = cnt[t] + 1;
if (cnt[j] >= n) return true; // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环
if (!st[j])
{
q.push(j);
st[j] = true;
}
}
}
}

return false;

}

floyd算法

时间复杂度是 O(n3)O(n3), nn 表示点数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
初始化:
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
if (i == j) d[i][j] = 0;
else d[i][j] = INF;

// 算法结束后,d[a][b]表示a到b的最短距离
void floyd()
{
for (int k = 1; k <= n; k ++ )
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

朴素版prim算法

时间复杂度是 O(n2+m)O(n2+m), nn 表示点数,mm 表示边数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
int n;      // n表示点数
int g[N][N]; // 邻接矩阵,存储所有边
int dist[N]; // 存储其他点到当前最小生成树的距离
bool st[N]; // 存储每个点是否已经在生成树中


// 如果图不连通,则返回INF(值是0x3f3f3f3f), 否则返回最小生成树的树边权重之和
int prim()
{
memset(dist, 0x3f, sizeof dist);

int res = 0;
for (int i = 0; i < n; i ++ )
{
int t = -1;
for (int j = 1; j <= n; j ++ )
if (!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;

if (i && dist[t] == INF) return INF;

if (i) res += dist[t];
st[t] = true;

for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], g[t][j]);
}

return res;

}

Kruskal算法

时间复杂度是 O(mlogm)O(mlogm), nn 表示点数,mm 表示边数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
int n, m;       // n是点数,m是边数
int p[N]; // 并查集的父节点数组

struct Edge // 存储边
{
int a, b, w;

bool operator< (const Edge &W)const
{
return w < W.w;
}

}edges[M];

int find(int x) // 并查集核心操作
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}

int kruskal()
{
sort(edges, edges + m);

for (int i = 1; i <= n; i ++ ) p[i] = i; // 初始化并查集

int res = 0, cnt = 0;
for (int i = 0; i < m; i ++ )
{
int a = edges[i].a, b = edges[i].b, w = edges[i].w;

a = find(a), b = find(b);
if (a != b) // 如果两个连通块不连通,则将这两个连通块合并
{
p[a] = b;
res += w;
cnt ++ ;
}
}

if (cnt < n - 1) return INF;
return res;

}

染色法判别二分图

时间复杂度是 O(n+m)O(n+m), nn 表示点数,mm 表示边数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
int n;      // n表示点数
int h[N], e[M], ne[M], idx; // 邻接表存储图
int color[N]; // 表示每个点的颜色,-1表示未染色,0表示白色,1表示黑色

// 参数:u表示当前节点,c表示当前点的颜色
bool dfs(int u, int c)
{
color[u] = c;
for (int i = h[u]; i != -1; i = ne[i])
{
int j = e[i];
if (color[j] == -1)
{
if (!dfs(j, !c)) return false;
}
else if (color[j] == c) return false;
}

return true;

}

bool check()
{
memset(color, -1, sizeof color);
bool flag = true;
for (int i = 1; i <= n; i ++ )
if (color[i] == -1)
if (!dfs(i, 0))
{
flag = false;
break;
}
return flag;
}

匈牙利算法

时间复杂度是 O(nm)O(nm), nn 表示点数,mm 表示边数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
int n1, n2;     // n1表示第一个集合中的点数,n2表示第二个集合中的点数
int h[N], e[M], ne[M], idx; // 邻接表存储所有边,匈牙利算法中只会用到从第一个集合指向第二个集合的边,所以这里只用存一个方向的边
int match[N]; // 存储第二个集合中的每个点当前匹配的第一个集合中的点是哪个
bool st[N]; // 表示第二个集合中的每个点是否已经被遍历过

bool find(int x)
{
for (int i = h[x]; i != -1; i = ne[i])
{
int j = e[i];
if (!st[j])
{
st[j] = true;
if (match[j] == 0 || find(match[j]))
{
match[j] = x;
return true;
}
}
}

return false;

}

// 求最大匹配数,依次枚举第一个集合中的每个点能否匹配第二个集合中的点
int res = 0;
for (int i = 1; i <= n1; i ++ )
{
memset(st, false, sizeof st);
if (find(i)) res ++ ;

试除法判定质数

1
2
3
4
5
6
7
8
bool is_prime(int x)
{
if (x < 2) return false;
for (int i = 2; i <= x / i; i ++ )
if (x % i == 0)
return false;
return true;
}

试除法分解质因数

1
2
3
4
5
6
7
8
9
10
11
12
void divide(int x)
{
for (int i = 2; i <= x / i; i ++ )
if (x % i == 0)
{
int s = 0;
while (x % i == 0) x /= i, s ++ ;
cout << i << ' ' << s << endl;
}
if (x > 1) cout << x << ' ' << 1 << endl;
cout << endl;
}

朴素筛法求素数

1
2
3
4
5
6
7
8
9
10
11
12
13
int primes[N], cnt;     // primes[]存储所有素数
bool st[N]; // st[x]存储x是否被筛掉

void get_primes(int n)
{
for (int i = 2; i <= n; i ++ )
{
if (st[i]) continue;
primes[cnt ++ ] = i;
for (int j = i + i; j <= n; j += i)
st[j] = true;
}
}

线性筛法求素数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
int primes[N], cnt;     // primes[]存储所有素数
bool st[N]; // st[x]存储x是否被筛掉

void get_primes(int n)
{
for (int i = 2; i <= n; i ++ )
{
if (!st[i]) primes[cnt ++ ] = i;
for (int j = 0; primes[j] <= n / i; j ++ )
{
st[primes[j] * i] = true;
if (i % primes[j] == 0) break;
}
}
}

试除法求所有约数

1
2
3
4
5
6
7
8
9
10
11
12
vector<int> get_divisors(int x)
{
vector<int> res;
for (int i = 1; i <= x / i; i ++ )
if (x % i == 0)
{
res.push_back(i);
if (i != x / i) res.push_back(x / i);
}
sort(res.begin(), res.end());
return res;
}

约数个数和约数之和

1
2
3
4
5
6
7
8
如果 N = p1^c1 * p2^c2 * ... *pk^ck
约数个数: (c1 + 1) * (c2 + 1) * ... * (ck + 1)
约数之和: (p1^0 + p1^1 + ... + p1^c1) * ... * (pk^0 + pk^1 + ... + pk^ck)
欧几里得算法 —— 模板题 AcWing 872. 最大公约数
int gcd(int a, int b)
{
return b ? gcd(b, a % b) : a;
}

求欧拉函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
int phi(int x)
{
int res = x;
for (int i = 2; i <= x / i; i ++ )
if (x % i == 0)
{
res = res / i * (i - 1);
while (x % i == 0) x /= i;
}
if (x > 1) res = res / x * (x - 1);

return res;

}

筛法求欧拉函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
int primes[N], cnt;     // primes[]存储所有素数
int euler[N]; // 存储每个数的欧拉函数
bool st[N]; // st[x]存储x是否被筛掉

void get_eulers(int n)
{
euler[1] = 1;
for (int i = 2; i <= n; i ++ )
{
if (!st[i])
{
primes[cnt ++ ] = i;
euler[i] = i - 1;
}
for (int j = 0; primes[j] <= n / i; j ++ )
{
int t = primes[j] * i;
st[t] = true;
if (i % primes[j] == 0)
{
euler[t] = euler[i] * primes[j];
break;
}
euler[t] = euler[i] * (primes[j] - 1);
}
}
}

快速幂

1
2
3
4
5
6
7
8
9
10
11
12
13
求 m^k mod p,时间复杂度 O(logk)。

int qmi(int m, int k, int p)
{
int res = 1 % p, t = m;
while (k)
{
if (k&1) res = res * t % p;
t = t * t % p;
k >>= 1;
}
return res;
}

扩展欧几里得算法

1
2
3
4
5
6
7
8
9
10
11
12
// 求x, y,使得ax + by = gcd(a, b)
int exgcd(int a, int b, int &x, int &y)
{
if (!b)
{
x = 1; y = 0;
return a;
}
int d = exgcd(b, a % b, y, x);
y -= (a/b) * x;
return d;
}

高斯消元

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
// a[N][N]是增广矩阵
int gauss()
{
int c, r;
for (c = 0, r = 0; c < n; c ++ )
{
int t = r;
for (int i = r; i < n; i ++ ) // 找到绝对值最大的行
if (fabs(a[i][c]) > fabs(a[t][c]))
t = i;

if (fabs(a[t][c]) < eps) continue;

for (int i = c; i <= n; i ++ ) swap(a[t][i], a[r][i]); // 将绝对值最大的行换到最顶端
for (int i = n; i >= c; i -- ) a[r][i] /= a[r][c]; // 将当前行的首位变成1
for (int i = r + 1; i < n; i ++ ) // 用当前行将下面所有的列消成0
if (fabs(a[i][c]) > eps)
for (int j = n; j >= c; j -- )
a[i][j] -= a[r][j] * a[i][c];

r ++ ;
}

if (r < n)
{
for (int i = r; i < n; i ++ )
if (fabs(a[i][n]) > eps)
return 2; // 无解
return 1; // 有无穷多组解
}

for (int i = n - 1; i >= 0; i -- )
for (int j = i + 1; j < n; j ++ )
a[i][n] -= a[i][j] * a[j][n];

return 0; // 有唯一解

}

递归法求组合数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
// c[a][b] 表示从a个苹果中选b个的方案数
for (int i = 0; i < N; i ++ )
for (int j = 0; j <= i; j ++ )
if (!j) c[i][j] = 1;
else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;
通过预处理逆元的方式求组合数 —— 模板题 AcWing 886. 求组合数 II
首先预处理出所有阶乘取模的余数fact[N],以及所有阶乘取模的逆元infact[N]
如果取模的数是质数,可以用费马小定理求逆元
int qmi(int a, int k, int p) // 快速幂模板
{
int res = 1;
while (k)
{
if (k & 1) res = (LL)res * a % p;
a = (LL)a * a % p;
k >>= 1;
}
return res;
}

// 预处理阶乘的余数和阶乘逆元的余数
fact[0] = infact[0] = 1;
for (int i = 1; i < N; i ++ )
{
fact[i] = (LL)fact[i - 1] * i % mod;
infact[i] = (LL)infact[i - 1] * qmi(i, mod - 2, mod) % mod;
}

Lucas定理

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
若p是质数,则对于任意整数 1 <= m <= n,有:
C(n, m) = C(n % p, m % p) * C(n / p, m / p) (mod p)

int qmi(int a, int k, int p) // 快速幂模板
{
int res = 1 % p;
while (k)
{
if (k & 1) res = (LL)res * a % p;
a = (LL)a * a % p;
k >>= 1;
}
return res;
}

int C(int a, int b, int p) // 通过定理求组合数C(a, b)
{
if (a < b) return 0;

LL x = 1, y = 1; // x是分子,y是分母
for (int i = a, j = 1; j <= b; i --, j ++ )
{
x = (LL)x * i % p;
y = (LL) y * j % p;
}

return x * (LL)qmi(y, p - 2, p) % p;

}

int lucas(LL a, LL b, int p)
{
if (a < p && b < p) return C(a, b, p);
return (LL)C(a % p, b % p, p) * lucas(a / p, b / p, p) % p;
}

分解质因数法求组合数

当我们需要求出组合数的真实值,而非对某个数的余数时,分解质因数的方式比较好用:

1. 筛法求出范围内的所有质数
    2. 通过 C(a, b) = a! / b! / (a - b)! 这个公式求出每个质因子的次数。 n! 中p的次数是 n / p + n / p^2 + n / p^3 + ...
    3. 用高精度乘法将所有质因子相乘
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
int primes[N], cnt;     // 存储所有质数
int sum[N]; // 存储每个质数的次数
bool st[N]; // 存储每个数是否已被筛掉


void get_primes(int n) // 线性筛法求素数
{
for (int i = 2; i <= n; i ++ )
{
if (!st[i]) primes[cnt ++ ] = i;
for (int j = 0; primes[j] <= n / i; j ++ )
{
st[primes[j] * i] = true;
if (i % primes[j] == 0) break;
}
}
}


int get(int n, int p) // 求n!中的次数
{
int res = 0;
while (n)
{
res += n / p;
n /= p;
}
return res;
}


vector<int> mul(vector<int> a, int b) // 高精度乘低精度模板
{
vector<int> c;
int t = 0;
for (int i = 0; i < a.size(); i ++ )
{
t += a[i] * b;
c.push_back(t % 10);
t /= 10;
}

while (t)
{
c.push_back(t % 10);
t /= 10;
}

return c;

}

get_primes(a); // 预处理范围内的所有质数

for (int i = 0; i < cnt; i ++ ) // 求每个质因数的次数
{
int p = primes[i];
sum[i] = get(a, p) - get(b, p) - get(a - b, p);
}

vector<int> res;
res.push_back(1);

for (int i = 0; i < cnt; i ++ ) // 用高精度乘法将所有质因子相乘
for (int j = 0; j < sum[i]; j ++ )
res = mul(res, primes[i]);

线段树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#include <bits/stdc++.h>
typedef long long ll;

using namespace std;
const int N = 100010;
int w[N], n, m;

struct Node{
int l, r;
ll sum, add;
}tr[N * 4];

void pushup(int u){
tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum; //左右儿子之和
}

void build(int u, int l, int r){
if(l == r) tr[u] = {l, r, w[r], 0};
else{
tr[u] = {l, r};
int mid = l + r >> 1;
build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);
pushup(u); //更新
}
}


void pushdown(int u){
auto &root = tr[u], &left = tr[u << 1], &right = tr[u << 1 | 1];
if(root.add){
left.add += root.add, left.sum += (ll)(left.r - left.l + 1) * root.add;
right.add += root.add, right.sum += (ll)(right.r - right.l + 1) * root.add;
root.add = 0;
}
}



//修改之前也需要pushdown()一下
void modify(int u, int l, int r, int d){
if(tr[u].l >= l && tr[u].r <= r){
tr[u].sum += (ll)(tr[u].r - tr[u].l + 1) * d;
tr[u].add += d;
}else{ //分裂的情况
pushdown(u);
int mid = tr[u].l + tr[u].r >> 1;
if(l <= mid) modify(u << 1, l, r, d);
if(r > mid) modify(u << 1 | 1, l, r, d);
pushup(u);
}
}



//查询之前一定要pushdown()一下
ll query(int u, int l, int r)
{
if (tr[u].l >= l && tr[u].r <= r) return tr[u].sum;

pushdown(u);
int mid = tr[u].l + tr[u].r >> 1;
ll sum = 0;
if (l <= mid) sum = query(u << 1, l, r);
if (r > mid) sum += query(u << 1 | 1, l, r);
return sum;
}

int main ()
{
cin >> n >> m;
for(int i = 1; i <= n; i++) scanf("%d", &w[i]);

build(1, 1, n);
char op[2];
int l, r, d;
while(m --){
scanf("%s%d%d", op, &l, &r);
if(op[0] == 'C'){
scanf("%d", &d);
modify(1, l, r, d);
}
else printf("%lld\n", query(1, l, r));
}

return 0;
}

扫描线+线段树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#include <bits/stdc++.h>

using namespace std;

const int N = 100010;

vector<double>ys;//用于离散化
int n;

// 用来存线段信息
struct segment {
double x, y1, y2;
int d; // 区分它是该矩阵前面的线段还是后面的线段
bool operator < (const segment&t)const
{
return x < t.x;
}
}seg[N * 2];//每个矩阵需要存两个线段

// 线段树的每个节点 保存的为线段, 0号点为y[0]到y[1],以此类推
struct node {
int l,r;
int cnt; // 记录当前区间整个被覆盖的次数
double len; // 记录这段区间的长度
}tr[N * 8]; //由于线段二倍,所以8倍空间

// 返回第一个 >= y 的数的下标
int find(double y) {
return lower_bound(ys.begin(), ys.end(), y) - ys.begin();
}

void pushup(int u) {
if(tr[u].cnt)tr[u].len = ys[tr[u].r + 1] - ys[tr[u].l];//表示整个区间都被覆盖,该段长度就为右端点 + 1后在ys中的值 - 左端点在ys中的值
else if(tr[u].l != tr[u].r){
tr[u].len = tr[u << 1].len + tr[u << 1 | 1].len;
}
else tr[u].len = 0;//表示为叶子节点且该线段没被覆盖,为无用线段,长度变为0
}

void modify(int u,int l,int r,int d) {
if(tr[u].l >= l && tr[u].r <= r) {
tr[u].cnt += d;
pushup(u); //更新该节点的len
}else{
int mid = tr[u].r + tr[u].l >> 1;
if (l <= mid)modify(u << 1, l, r, d); //左边存在点
if (r > mid)modify(u << 1 | 1, l, r, d); //右边存在点
pushup(u); //更新
}
}

void build(int u,int l,int r){
tr[u] = {l, r, 0, 0};
if (l != r){
int mid = l + r >> 1;
build(u << 1,l,mid),build(u << 1 | 1,mid + 1,r);
//后面都为0,不需更新len
}
}

int main()
{
int T = 1;
while (cin >> n && n)
{
ys.clear();
int j = 0; //线段个数
for (int i = 0 ; i < n ; i ++) {
double x1,y1,x2,y2;
cin>>x1>>y1>>x2>>y2;
seg[j ++] = {x1, y1, y2, 1}; //前面的线段
seg[j ++] = {x2, y1, y2, -1}; //后面的线段
ys.push_back(y1), ys.push_back(y2); //y轴出现过那些点
}
sort(seg,seg + j); //线段按x排序

//去重
sort(ys.begin(),ys.end());
ys.erase(unique(ys.begin(),ys.end()),ys.end());//离散化去重

build(1, 0, ys.size() - 2);

double res = 0;
for (int i = 0 ; i < j ; i ++) {
if (i)res += tr[1].len * (seg[i].x - seg[i - 1].x); //根节点的长度即为此时有效线段长度 ,再 * x轴长度即为面积
modify(1, find(seg[i].y1), find(seg[i].y2) - 1, seg[i].d);
}

printf("Test case #%d\n", T ++ );
printf("Total explored area: %.2lf\n\n", res);
}
return 0;
}

线段树维护左右最大值

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#include <bits/stdc++.h>

using namespace std;
const int N = 50010;
int n, m;
char op;

struct node{
int l, r;
int lmax, rmax, t;
}tr[4 * N];

void pushup(int u){
tr[u].lmax = tr[u << 1].lmax; tr[u].rmax = tr[u << 1 | 1].rmax;
if(tr[u << 1].r - tr[u << 1].l + 1 == tr[u << 1].t) tr[u].lmax += tr[u << 1 | 1].lmax; //左边区间长度等于可达长度
if(tr[u << 1 | 1].r - tr[u << 1 | 1].l + 1 == tr[u << 1 | 1].t) tr[u].rmax += tr[u << 1].rmax;
tr[u].t = max(max(tr[u << 1].t, tr[u << 1 | 1].t), tr[u << 1].rmax + tr[u << 1 | 1].lmax); //左区间后缀与右区间前缀和,和两区间的最大值
}

void build(int u, int l, int r){
tr[u] = {l, r};
if(l == r){
tr[u] = {l, r, 1, 1, 1};
return;
}
int mid = l + r >> 1;
build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);
pushup(u);
}

void modify(int u, int x, int v){
if(tr[u].l == tr[u].r){
tr[u] = {x, x, v, v, v};
return;
}
int mid = tr[u].l + tr[u].r >> 1;
if(x <= mid) modify(u << 1, x, v);
else modify(u << 1 | 1, x, v);
pushup(u);
}


int query(int u, int x) {
if (tr[u].l == tr[u].r) return tr[u].t;
int mid = tr[u].l + tr[u].r >> 1;
if (mid - tr[u << 1].rmax + 1 <= x && mid + tr[u << 1 | 1].lmax >= x)
return tr[u << 1].rmax + tr[u << 1 | 1].lmax;
if (x <= mid) return query(u << 1, x);
else return query(u << 1 | 1, x);
}


int main ()
{
ios::sync_with_stdio(0);
while(cin >> n >> m){
build(1, 1, n);
stack<int> stk;
int x;
while(m -- ){
cin >> op;
if(op == 'D') {
cin >> x;
modify(1, x, 0);
stk.push(x);
}else if(op == 'Q'){
cin >> x;
cout << query(1, x) << "\n";
}else{
if(stk.size()){
modify(1, stk.top(), 1);
stk.pop();
}
}
}
}
return 0;
}

可达性统计

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#include <iostream>
#include <algorithm>
#include <bitset>
#include <cstring>
#include <queue>
using namespace std;

const int N = 30010;
int h[N], e[N], ne[N], idx;
int seq[N], d[N];
bitset<N> f[N];
int n, m;

void add(int a, int b){
e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}

void topsort(){
queue<int> q;
for(int i = 1; i <= n; i++){
if(!d[i])
q.push(i);
}
int k = 1; //记录拓扑排序的序列长度
while(q.size()){
int t = q.front();
q.pop();
seq[k++] = t;
for(int i = h[t]; ~i; i = ne[i]){
int j = e[i];
d[j] --; //入度减一
if(!d[j]){ //如果当前节点入度为0,加入到队列中
q.push(j);
}
}
}
}

int main ()
{
cin >> n >> m;
memset(h, -1, sizeof h);
for(int i = 0; i < m; i++){
int a, b;
cin >> a >> b;
add(a, b);
d[b]++;
}
topsort();
for(int i = n; i; i--){//倒着从后往前遍历,因为每次都需要后面的点来更新前面点能到达的点
int k = seq[i];
f[k][k] = 1; //当前节点一定可以到达当前节点
for(int j = h[k]; ~j; j = ne[j]){ //当前节点的所有下一个节点能到达的地方
f[k] = f[k] | f[e[j]];
}
}
for(int i = 1; i <= n; i++){
cout << f[i].count() << endl;
}
return 0;
}